
37

CHAPTER 3

Internet Control Message
Protocol (ICMP)

Chapter 2 discusses the netlink sockets implementation and how netlink sockets are used as a communication
channel between the kernel and userspace. This chapter deals with the ICMP protocol, which is a Layer 4 protocol.
Userspace applications can use the ICMP protocol (to send and receive ICMP packets) by using the sockets API (the
best-known example is probably the ping utility). This chapter discusses how these ICMP packets are handled in the
kernel and gives some examples.

The ICMP protocol is used primarily as a mandatory mechanism for sending error and control messages about
the network layer (L3). The protocol enables getting feedback about problems in the communication environment
by sending ICMP messages. These messages provide error handling and diagnostics. The ICMP protocol is relatively
simple but is very important for assuring correct system behavior. The basic definition of ICMPv4 is in RFC 792,
“Internet Control Message Protocol.” This RFC defines the goals of the ICMPv4 protocol and the format of various
ICMPv4 messages. I also mention in this chapter RFC 1122 (“Requirements for Internet Hosts—Communication
Layers”) which defines some requirements about several ICMP messages; RFC 4443, which defines the ICMPv6
protocol; and RFC 1812, which defines requirements for routers. I also describe which types of ICMPv4 and ICMPv6
messages exist, how they are sent, and how they are processed. I cover ICMP sockets, including why they were added
and how they are used. Keep in mind that the ICMP protocol is also used for various security attacks; for example, the
Smurf Attack is a denial-of-service attack in which large numbers of ICMP packets with the intended victim’s spoofed
source IP are sent as broadcasts to a computer network using an IP broadcast address.

ICMPv4
ICMPv4 messages can be classified into two categories: error messages and information messages (they are termed
“query messages” in RFC 1812). The ICMPv4 protocol is used in diagnostic tools like ping and traceroute. The
famous ping utility is in fact a userspace application (from the iputils package) which opens a raw socket and sends
an ICMP_ECHO message and should get back an ICMP_REPLY message as a response. Traceroute is a utility to find
the path between a host and a given destination IP address. The traceroute utility is based on setting varying values
to the Time To Live (TTL), which is a field in the IP header representing the hop count. The traceroute utility takes
advantage of the fact that a forwarding machine will send back an ICMP_TIME_EXCEED message when the TTL
of the packet reaches 0. The traceroute utility starts by sending messages with a TTL of 1, and with each received
ICMP_DEST_UNREACH with code ICMP_TIME_EXCEED as a reply, it increases the TTL by 1 and sends again to the
same destination. It uses the returned ICMP “Time Exceeded” messages to build a list of the routers that the packets
traverse, until the destination is reached and returns an ICMP “Echo Reply” message. Traceroute uses the UDP
protocol by default. The ICMPv4 module is net/ipv4/icmp.c. Note that ICMPv4 cannot be built as a kernel module.

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

38

ICMPv4 Initialization
ICMPv4 initialization is done in the inet_init() method, which is invoked in boot phase. The inet_init() method
invokes the icmp_init() method, which in turn calls the icmp_sk_init() method to create a kernel ICMP socket
for sending ICMP messages and to initialize some ICMP procfs variables to their default values. (You will encounter
some of these procfs variables later in this chapter.)

Registration of the ICMPv4 protocol, like registration of other IPv4 protocols, is done in inet_init():

static const struct net_protocol icmp_protocol = {
 .handler = icmp_rcv,
 .err_handler = icmp_err,
 .no_policy = 1,
 .netns_ok = 1,
};

(net/ipv4/af_inet.c)

• icmp_rcv: The handler callback. This means that for incoming packets whose protocol field in
the IP header equals IPPROTO_ICMP (0x1), icmp_rcv() will be invoked.

• no_policy: This flag is set to 1, which implies that there is no need to perform IPsec policy
checks; for example, the xfrm4_policy_check() method is not called in ip_local_deliver_
finish() because the no_policy flag is set.

• netns_ok: This flag is set to 1, which indicates that the protocol is aware of network
namespaces. Network namespaces are described in Appendix A, in the net_device section.
The inet_add_protocol() method will fail for protocols whose netns_ok field is 0 with an
error of -EINVAL.

static int __init inet_init(void) {
. . .
 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0)
 pr_crit("%s: Cannot add ICMP protocol\n", __func__);
. . .

int __net_init icmp_sk_init(struct net *net)
{
 . . .
 for_each_possible_cpu(i) {
 struct sock *sk;

 err = inet_ctl_sock_create(&sk, PF_INET,
 SOCK_RAW, IPPROTO_ICMP, net);
 if (err < 0)
 goto fail;

 net->ipv4.icmp_sk[i] = sk;
 . . .
 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DONT;
 }
 . . .

}

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

39

In the icmp_sk_init() method, a raw ICMPv4 socket is created for each CPU and is kept in an array. The current
sk can be accessed with the icmp_sk(struct net *net) method. These sockets are used in the icmp_push_reply()
method. The ICMPv4 procfs entries are initialized in the icmp_sk_init() method; I mention them in this chapter
and summarize them in the “Quick Reference” section at the end of this chapter. Every ICMP packet starts with
an ICMPv4 header. Before discussing how ICMPv4 messages are received and transmitted, the following section
describes the ICMPv4 header, so that you better understand how ICMPv4 messages are built.

ICMPv4 Header
The ICMPv4 header consists of type (8 bits), code (8 bits), and checksum (16 bits), and a 32 bits variable part member
(its content varies based on the ICMPv4 type and code), as you can see in Figure 3-1. After the ICMPv4 header comes
the payload, which should include the IPv4 header of the originating packet and a part of its payload. According to
RFC 1812, it should contain as much of the original datagram as possible without the length of the ICMPv4 datagram
exceeding 576 bytes. This size is in accordance to RFC 791, which specifies that “All hosts must be prepared to accept
datagrams of up to 576 octets.”

Figure 3-1. The ICMPv4 header

The ICMPv4 header is represented by struct icmphdr:

struct icmphdr {
 __u8 type;
 __u8 code;
 __sum16 checksum;
 union {
 struct {
 __be16 id;
 __be16 sequence;
 } echo;
 __be32 gateway;
 struct {
 __be16 __unused;
 __be16 mtu;
 } frag;
 } un;
};

(include/uapi/linux/icmp.h)

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

40

You’ll find the current complete list of assigned ICMPv4 message type numbers and codes at
www.iana.org/assignments/icmp-parameters/icmp-parameters.xml.

The ICMPv4 module defines an array of icmp_control objects, named icmp_pointers, which is indexed by
ICMPv4 message type. Let’s take a look at the icmp_control structure definition and at the icmp_pointers array:

struct icmp_control {
 void (*handler)(struct sk_buff *skb);
 short error; /* This ICMP is classed as an error message */
};

static const struct icmp_control icmp_pointers[NR_ICMP_TYPES+1];

NR_ICMP_TYPES is the highest ICMPv4 type, which is 18.

(include/uapi/linux/icmp.h)

The error field of the icmp_control objects of this array is 1 only for error message types, like the “Destination
Unreachable” message (ICMP_DEST_UNREACH), and it is 0 (implicitly) for information messages, like echo
(ICMP_ECHO). Some handlers are assigned to more than one type. Next I discuss handlers and the ICMPv4 message
types they manage.

ping_rcv() handles receiving a ping reply (ICMP_ECHOREPLY). The ping_rcv() method is implemented
in the ICMP sockets code, net/ipv4/ping.c. In kernels prior to 3.0, in order to send ping, you had to create a raw
socket in userspace. When receiving a reply to a ping (ICMP_ECHOREPLY message), the raw socket that sent the ping
processed it. In order to understand how this is implemented, let’s take a look in ip_local_deliver_finish(), which
is the method which handles incoming IPv4 packets and passes them to the sockets which should process them:

static int ip_local_deliver_finish(struct sk_buff *skb)
{
 . . .
 int protocol = ip_hdr(skb)->protocol;
 const struct net_protocol *ipprot;
 int raw;

 resubmit:
 raw = raw_local_deliver(skb, protocol);
 ipprot = rcu_dereference(inet_protos[protocol]);
 if (ipprot != NULL) {
 int ret;
 . . .
 ret = ipprot->handler(skb);
 . . .

(net/ipv4/ip_input.c)

When the ip_local_deliver_finish() method receives an ICMP_ECHOREPLY packet, it first tries to deliver
it to a listening raw socket, which will process it. Because a raw socket that was opened in userspace handles the
ICMP_ECHOREPLY message, there is no need to do anything further with it. So when the ip_local_deliver_finish()
method receives ICMP_ECHOREPLY, the raw_local_deliver() method is invoked first to process it by a raw socket,
and afterwards the ipprot->handler(skb) is invoked (this is the icmp_rcv() callback in the case of ICMPv4 packet).
And because the packet was already processed by a raw socket, there is nothing more to do with it. So the packet is
discarded silently by calling the icmp_discard() method, which is the handler for ICMP_ECHOREPLY messages.

When the ICMP sockets (“ping sockets”) were integrated into the Linux kernel in kernel 3.0, this was changed.
Ping sockets are discussed in the “ICMP Sockets (“Ping Sockets”)” section later in this chapter. In this context I should

http://www.iana.org/assignments/icmp-parameters/icmp-parameters.xml

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

41

note that with ICMP sockets, the sender of ping can be also not a raw socket. For example, you can create a socket like
this: socket (PF_INET, SOCK_DGRAM, PROT_ICMP) and use it to send ping packets. This socket is not a raw socket.
As a result, the echo reply is not delivered to any raw socket, since there is no corresponding raw socket which listens.
To avoid this problem, the ICMPv4 module handles receiving ICMP_ECHOREPLY messages with the ping_rcv()
callback. The ping module is located in the IPv4 layer (net/ipv4/ping.c). Nevertheless, most of the code in net/
ipv4/ping.c is a dual-stack code (intended for both IPv4 and IPv6). As a result, the ping_rcv() method also handles
ICMPV6_ECHO_REPLY messages for IPv6 (see icmpv6_rcv() in net/ipv6/icmp.c). I talk more about ICMP sockets
later in this chapter.

icmp_discard() is an empty handler used for nonexistent message types (message types whose numbers are
without corresponding declarations in the header file) and for some messages that do not need any handling, for
example ICMP_TIMESTAMPREPLY. The ICMP_TIMESTAMP and the ICMP_TIMESTAMPREPLY messages are used
for time synchronization; the sender sends the originate timestamp in an ICMP_TIMESTAMP request; the receiver
sends ICMP_TIMESTAMPREPLY with three timestamps: the originating timestamp which was sent by the sender of
the timestamp request, as well as a receive timestamp and a transmit timestamp. There are more commonly used
protocols for time synchronization than ICMPv4 timestamp messages, like the Network Time Protocol (NTP). I should
also mention the Address Mask request (ICMP_ADDRESS), which is normally sent by a host to a router in order to
obtain an appropriate subnet mask. Recipients should reply to this message with an address mask reply message. The
ICMP_ADDRESS and the ICMP_ADDRESSREPLY messages, which were handled in the past by the icmp_address()
method and by the icmp_address_reply() method, are now handled also by icmp_discard(). The reason is that
there are other ways to get the subnet masks, such as with DHCP.

icmp_unreach() handles ICMP_DEST_UNREACH, ICMP_TIME_EXCEED, ICMP_PARAMETERPROB, and
ICMP_QUENCH message types.

An ICMP_DEST_UNREACH message can be sent under various conditions. Some of these conditions are described in
the “Sending ICMPv4 Messages: Destination Unreachable” section in this chapter.

An ICMP_TIME_EXCEEDED message is sent in two cases:
In ip_forward(), each packet decrements its TTL. According to RFC 1700, the recommended TTL for the IPv4

protocol is 64. If the TTL reaches 0, this is indication that the packet should be dropped because probably there was
some loop. So, if the TTL reaches 0 in ip_forward(), the icmp_send() method is invoked:

icmp_send(skb, ICMP_TIME_EXCEEDED, ICMP_EXC_TTL, 0);

(net/ipv4/ip_forward.c)

In such a case, an ICMP_TIME_EXCEEDED message with code ICMP_EXC_TTL is sent, the SKB is freed, the
InHdrErrors SNMP counter (IPSTATS_MIB_INHDRERRORS) is incremented, and the method returns
NET_RX_DROP.

In ip_expire(), the following occurs when a timeout of a fragment exists:

icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);

(net/ipv4/ip_fragment.c)

An ICMP_PARAMETERPROB message is sent when parsing the options of an IPv4 header fails, in the
ip_options_compile() method or in the ip_options_rcv_srr() method (net/ipv4/ip_options.c). The options are
an optional, variable length field (up to 40 bytes) of the IPv4 header. IP options are discussed in Chapter 4.

An ICMP_QUENCH message type is in fact deprecated. According to RFC 1812, section 4.3.3.3 (Source Quench):
“A router SHOULD NOT originate ICMP Source Quench messages”, and also, “A router MAY ignore any ICMP Source
Quench messages it receives.” The ICMP_QUENCH message was intended to reduce congestion, but it turned out that
this is an ineffective solution.

icmp_redirect() handles ICMP_REDIRECT messages; according to RFC 1122, section 3.2.2.2, hosts
should not send an ICMP redirect message; redirects are to be sent only by gateways. icmp_redirect() handles
ICMP_REDIRECT messages. In the past, icmp_redirect() called ip_rt_redirect(), but an ip_rt_redirect()

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

42

invocation is not needed anymore as the protocol handlers now all properly propagate the redirect back into the
routing code. In fact, in kernel 3.6, the ip_rt_redirect() method was removed. So the icmp_redirect() method
first performs sanity checks and then calls icmp_socket_deliver(), which delivers the packet to the raw sockets and
invokes the protocol error handler (in case it exists). Chapter 6 discusses ICMP_REDIRECT messages in more depth.

icmp_echo() handles echo (“ping”) requests (ICMP_ECHO) by sending echo replies (ICMP_ECHOREPLY) with
icmp_reply(). If case net->ipv4.sysctl_icmp_echo_ignore_all is set, a reply will not be sent. For configuring
ICMPv4 procfs entries, see the “Quick Reference” section at the end of this chapter, and also Documentation/
networking/ip-sysctl.txt.

icmp_timestamp() handles ICMP Timestamp requests (ICMP_TIMESTAMP) by sending ICMP_
TIMESTAMPREPLY with icmp_reply().

Before discussing sending ICMP messages by the icmp_reply() method and by the icmp_send() method,
I should describe the icmp_bxm (“ICMP build xmit message”) structure, which is used in both methods:

struct icmp_bxm {
 struct sk_buff *skb;
 int offset;
 int data_len;

 struct {
 struct icmphdr icmph;
 __be32 times[3];
 } data;
 int head_len;
 struct ip_options_data replyopts;
};

• skb: For the icmp_reply() method, this skb is the request packet; the icmp_param object
(instance of icmp_bxm) is built from it (in the icmp_echo() method and in the icmp_timestamp()
method). For the icmp_send() method, this skb is the one that triggered sending an ICMPv4
message due to some conditions; you will see several examples of such messages in this section.

• offset: Difference (offset) between skb_network_header(skb) and skb->data.

• data_len: ICMPv4 packet payload size.

• icmph: The ICMP v4 header.

• times[3]: Array of three timestamps, filled in icmp_timestamp().

• head_len: Size of the ICMPv4 header (in case of icmp_timestamp(), there are additional 12
bytes for the timestamps).

• replyopts: An ip_options data object. IP options are optional fields after the IP header, up
to 40 bytes. They enable advanced features like strict routing/loose routing, record routing,
time stamping, and more. They are initialized with the ip_options_echo() method. Chapter 4
discusses IP options.

Receiving ICMPv4 Messages
The ip_local_deliver_finish() method handles packets for the local machine. When getting an ICMP packet, the
method delivers the packet to the raw sockets that had performed registration of ICMPv4 protocol. In the
icmp_rcv() method, first the InMsgs SNMP counter (ICMP_MIB_INMSGS) is incremented. Subsequently, the

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

43

checksum correctness is verified. If the checksum is not correct, two SNMP counters are incremented, InCsumErrors
and InErrors (ICMP_MIB_CSUMERRORS and ICMP_MIB_INERRORS, respectively), the SKB is freed, and the
method returns 0. The icmp_rcv() method does not return an error in this case. In fact, the icmp_rcv() method
always returns 0; the reason for returning 0 in case of checksum error is that no special thing should be done
when receiving an erroneous ICMP message except to discard it; when a protocol handler returns a negative
error, another attempt to process the packet is performed, and it is not needed in this case. For more details, refer
to the implementation of the ip_local_deliver_finish() method. Then the ICMP header is examined in order
to find its type; the corresponding procfs message type counter is incremented (each ICMP message type has a
procfs counter), and a sanity check is performed to verify that it is not higher than the highest permitted value
(NR_ICMP_TYPES). According to section 3.2.2 of RFC 1122, if an ICMP message of unknown type is received, it must
be silently discarded. So if the message type is out of range, the InErrors SNMP counter (ICMP_MIB_INERRORS) is
incremented, and the SKB is freed.

In case the packet is a broadcast or a multicast, and it is an ICMP_ECHO message or an ICMP_TIMESTAMP
message, there is a check whether broadcast/multicast echo requests are permitted by reading the variable
net->ipv4.sysctl_icmp_echo_ignore_broadcasts. This variable can be configured via procfs by writing to
/proc/sys/net/ipv4/icmp_echo_ignore_broadcasts, and by default its value is 1. If this variable is set, the packet
is dropped silently. This is done according to section 3.2.2.6 of RFC 1122: “An ICMP Echo Request destined to an
IP broadcast or IP multicast address MAY be silently discarded.” And according to section 3.2.2.8 of this RFC,
“An ICMP Timestamp Request message to an IP broadcast or IP multicast address MAY be silently discarded.” Then a
check is performed to detect whether the type is allowed for broadcast/multicast (ICMP_ECHO, ICMP_TIMESTAMP,
ICMP_ADDRESS, and ICMP_ADDRESSREPLY). If it is not one of these message types, the packet is dropped and
0 is returned. Then according to its type, the corresponding entry in the icmp_pointers array is fetched and the
appropriate handler is called. Let’s take a look in the ICMP_ECHO entry in the icmp_control dispatch table:

static const struct icmp_control icmp_pointers[NR_ICMP_TYPES + 1] = {
...
 [ICMP_ECHO] = {
 .handler = icmp_echo,
 },
...
}

So when receiving a ping (the type of the message is “Echo Request,” ICMP_ECHO), it is handled by the
icmp_echo() method. The icmp_echo() method changes the type in the ICMP header to be ICMP_ECHOREPLY and
sends a reply by calling the icmp_reply() method. Apart from ping, the only other ICMP message which requires a
response is the timestamp message (ICMP_TIMESTAMP); it is handled by the icmp_timestamp() method, which,
much like in the ICMP_ECHO case, changes the type to ICMP_TIMESTAMPREPLY and sends a reply by calling the
icmp_reply() method. Sending is done by ip_append_data() and by ip_push_pending_frames(). Receiving a ping
reply (ICMP_ECHOREPLY) is handled by the ping_rcv() method.

You can disable replying to pings with the following:

echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_all

There are some callbacks that handle more than one ICMP type. The icmp_discard() callback, for example,
handles ICMPv4 packets whose type is not handled by the Linux ICMPv4 implementation, and messages like
ICMP_TIMESTAMPREPLY, ICMP_INFO_REQUEST , ICMP_ADDRESSREPLY, and more.

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

44

Sending ICMPv4 Messages: “Destination Unreachable”
There are two methods for sending an ICMPv4 message: the first is the icmp_reply() method, which is sent as a
response for two types of ICMP requests, ICMP_ECHO and ICMP_TIMESTAMP. The second one is the icmp_send()
method, where the local machine initiates sending an ICMPv4 message under certain conditions (described in this
section). Both these methods eventually invoke icmp_push_reply() for actually sending the packet. The
icmp_reply() method is called as a response to an ICMP_ECHO message from the icmp_echo() method, and as
a response to an ICMP_TIMESTAMP message from the icmp_timestamp() method. The icmp_send() method is
invoked from many places in the IPv4 network stack—for example, from netfilter, from the forwarding code
(ip_forward.c), from tunnels like ipip and ip_gre, and more.

This section looks into some of the cases when a “Destination Unreachable” message is sent (the type is
ICMP_DEST_UNREACH).

Code 2: ICMP_PROT_UNREACH (Protocol Unreachable)

When the protocol of the IP header (which is an 8-bit field) is a nonexistent protocol, an ICMP_DEST_UNREACH/
ICMP_PROT_UNREACH is sent back to the sender because there is no protocol handler for such a protocol (the
protocol handler array is indexed by the protocol number, so for nonexistent protocols there will be no handler). By
nonexistent protocol I mean either that because of some error indeed the protocol number of the IPv4 header does not
appear in the protocol number list (which you can find in include/uapi/linux/in.h, for IPv4), or that the kernel was
built without support for that protocol, and, as a result, this protocol is not registered and there is no entry for it in the
protocol handlers array. Because such a packet can’t be handled, an ICMPv4 message of “Destination Unreachable”
should be replied back to the sender; the ICMP_PROT_UNREACH code in the ICMPv4 reply signifies the cause of the
error, “protocol is unreachable.” See the following:

static int ip_local_deliver_finish(struct sk_buff *skb)
 {
 ...
 int protocol = ip_hdr(skb)->protocol;
 const struct net_protocol *ipprot;
 int raw;

resubmit:
 raw = raw_local_deliver(skb, protocol);

 ipprot = rcu_dereference(inet_protos[protocol]);
 if (ipprot != NULL) {
 ...
 } else {
 if (!raw) {
 if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
 IP_INC_STATS_BH(net, IPSTATS_MIB_INUNKNOWNPROTOS);
 icmp_send(skb, ICMP_DEST_UNREACH,ICMP_PROT_UNREACH, 0);
 }
 ...
 }

(net/ipv4/ip_input.c)

In this example, a lookup in the inet_protos array by protocol is performed; and because no entry was found,
this means that the protocol is not registered in the kernel.

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

45

Code 3: ICMP_PORT_UNREACH (“Port Unreachable”)

When receiving UDPv4 packets, a matching UDP socket is searched for. If no matching socket is found, the checksum
correctness is verified. If it is wrong, the packet is dropped silently. If it is correct, the statistics are updated and a
“Destination Unreachable”/”Port Unreachable” ICMP message is sent back:

int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, int proto)
{
 struct sock *sk;
 ...
 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable)
 ...
 if (sk != NULL) {
 ...
 }

 /* No socket. Drop packet silently, if checksum is wrong */
 if (udp_lib_checksum_complete(skb))
 goto csum_error;

 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
 ...
 }
...

}

(net/ipv4/udp.c)

A lookup is being performed by the __udp4_lib_lookup_skb() method, and if there is no socket, the statistics are
updated and an ICMP_DEST_UNREACH message with ICMP_PORT_UNREACH code is sent back.

Code 4: ICMP_FRAG_NEEDED

When forwarding a packet with a length larger than the MTU of the outgoing link, if the don’t fragment (DF) bit
in the IPv4 header (IP_DF) is set, the packet is discarded and an ICMP_DEST_UNREACH message with
ICMP_FRAG_NEEDED code is sent back to the sender:

int ip_forward(struct sk_buff *skb)
{
 ...
 struct rtable *rt; /* Route we use */
 ...
 if (unlikely(skb->len > dst_mtu(&rt->dst) && !skb_is_gso(skb) &&
 (ip_hdr(skb)->frag_off & htons(IP_DF))) && !skb->local_df) {
 IP_INC_STATS(dev_net(rt->dst.dev), IPSTATS_MIB_FRAGFAILS);

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

46

 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
 htonl(dst_mtu(&rt->dst)));
 goto drop;
 }
 ...
}

(net/ipv4/ip_forward.c)

Code 5: ICMP_SR_FAILED

When forwarding a packet with the strict routing option and gatewaying set, a “Destination Unreachable” message
with ICMP_SR_FAILED code is sent back, and the packet is dropped:

int ip_forward(struct sk_buff *skb)
 {
 struct ip_options *opt = &(IPCB(skb)->opt);
 ...
 if (opt->is_strictroute && rt->rt_uses_gateway)
 goto sr_failed;
 ...
sr_failed:
 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_SR_FAILED, 0);
 goto drop;
}

(net/ipv4/ip_forward.c)

For a full list of all IPv4 “Destination Unreachable” codes, see Table 3-1 in the “Quick Reference” section at the
end of this chapter. Note that a user can configure some rules with the iptables REJECT target and the --reject-with
qualifier, which can send “Destination Unreachable” messages according to the selection; more in the “Quick
Reference” section at the end of this chapter.

Both the icmp_reply() and the icmp_send() methods support rate limiting; they call icmpv4_xrlim_allow(),
and if the rate limiting check allows sending the packet (the icmpv4_xrlim_allow() returns true), they send the
packet. It should be mentioned here that rate limiting is not performed automatically on all types of traffic. Here are
the conditions under which rate limiting check will not be performed:

The message type is unknown.•

The packet is of PMTU discovery.•

The device is a loopback device.•

The ICMP type is not enabled in the rate mask.•

If all these conditions are not matched, rate limiting is performed by calling the inet_peer_xrlim_allow()
method. You’ll find more info about rate mask in the “Quick Reference” section at the end of this chapter.

Let’s look inside the icmp_send() method. First, this is its prototype:

void icmp_send(struct sk_buff *skb_in, int type, int code, __be32 info)

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

47

skb_in is the SKB which caused the invocation of the icmp_send() method, type and code are the ICMPv4

message type and code, respectively. The last parameter, info, is used in the following cases:

For the ICMP_PARAMETERPROB message type it is the offset in the IPv4 header where the •
parsing problem occurred.

For the ICMP_DEST_UNREACH message type with ICMP_FRAG_NEEDED code, it is the MTU.•

For the ICMP_REDIRECT message type with ICMP_REDIR_HOST code, it is the IP address of •
the destination address in the IPv4 header of the provoking SKB.

When further looking into the icmp_send() method, first there are some sanity checks. Then multicast/broadcast
packets are rejected. A check of whether the packet is a fragment is performed by inspecting the frag_off field of
the IPv4 header. If the packet is fragmented, an ICMPv4 message is sent, but only for the first fragment. According
to section 4.3.2.7 of RFC 1812, an ICMP error message must not be sent as the result of receiving an ICMP error
message. So first a check is performed to find out whether the ICMPv4 message to be sent is an error message, and if
it is so, another check is performed to find out whether the provoking SKB contained an error ICMPv4 message, and
if so, then the method returns without sending the ICMPv4 message. Also if the type is an unknown ICMPv4 type
(higher than NR_ICMP_TYPES), the method returns without sending the ICMPv4 message, though this isn’t specified
explicitly by the RFC. Then the source address is determined according to the value of net->ipv4.sysctl_icmp_
errors_use_inbound_ifaddr value (more details in the “Quick Reference” section at the end of this chapter). Then
the ip_options_echo() method is invoked to copy the IP options of the IPv4 header of the invoking SKB. An icmp_bxm
object (icmp_param) is being allocated and initialized, and a lookup in the routing subsystem is performed with the
icmp_route_lookup() method. Then the icmp_push_reply() method is invoked.

Let’s take a look at the icmp_push_reply() method, which actually sends the packet. The icmp_push_reply()
first finds the socket on which the packet should be sent by calling:

sk = icmp_sk(dev_net((*rt)->dst.dev));

The dev_net() method returns the network namespace of the outgoing network device. (The dev_net() method
and network namespaces are discussed in chapter 14 and in Appendix A.) Then, the icmp_sk() method fetches the
socket (because in SMP there is a socket per CPU). Then the ip_append_data() method is called to move the packet
to the IP layer. If the ip_append_data() method fails, the statistics are updated by incrementing the ICMP_MIB_
OUTERRORS counter and the ip_flush_pending_frames() method is called to free the SKB. I discuss the
ip_append_data() method and the ip_flush_pending_frames() method in Chapter 4.

Now that you know all about ICMPv4, it’s time to move on to ICMPv6.

ICMPv6
ICMPv6 has many similarities to ICMPv4 when it comes to reporting errors in the network layer (L3). There are
additional tasks for ICMPv6 which are not performed in ICMPv4. This section discusses the ICMPv6 protocol, its
new features (which are not implemented in ICMPv4), and the features which are similar. ICMPv6 is defined in RFC
4443. If you delve into ICMPv6 code you will probably encounter, sooner or later, comments that mention RFC 1885.
In fact, RFC 1885, “Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6),” is the base
ICMPv6 RFC. It was obsoleted by RFC 2463, which was in turn obsoleted by RFC 4443. The ICMPv6 implementation is
based upon IPv4, but it is more complicated; the changes and additions that were added are discussed in this section.

The ICMPv6 protocol has a next header value of 58, according to RFC 4443, section 1 (Chapter 8 discusses IPv6
next headers). ICMPv6 is an integral part of IPv6 and must be fully implemented by every IPv6 node. Apart from error
handling and diagnostics, ICMPv6 is used for the Neighbour Discovery (ND) protocol in IPv6, which replaces and
enhances functions of ARP in IPv4, and for the Multicast Listener Discovery (MLD) protocol, which is the counterpart
of the IGMP protocol in IPv4, shown in Figure 3-2.

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

48

This section covers the ICMPv6 implementation. As you will see, it has many things in common with the
ICMPv4 implementation in the way messages are handled and sent. There are even cases when the same methods
are called in ICMPv4 and in ICMPv6 (for example, ping_rcv() and inet_peer_xrlim_allow()). There are some
differences, and some topics are unique to ICMPv6. The ping6 and traceroute6 utilities are based on ICMPv6 and
are the counterparts of ping and traceroute utilities of IPv4 (mentioned in the ICMPv4 section in the beginning of
this chapter). ICMPv6 is implemented in net/ipv6/icmp.c and in net/ipv6/ip6_icmp.c. As with ICMPv4, ICMPv6
cannot be built as a kernel module.

ICMPv6 Initialization
ICMPv6 initialization is done by the icmpv6_init() method and by the icmpv6_sk_init() method. Registration of
the ICMPv6 protocol is done by icmpv6_init() (net/ipv6/icmp.c):

static const struct inet6_protocol icmpv6_protocol = {
 .handler = icmpv6_rcv,
 .err_handler = icmpv6_err,
 .flags = INET6_PROTO_NOPOLICY|INET6_PROTO_FINAL,
 };

The handler callback is icmpv6_rcv(); this means that for incoming packets whose protocol field equals
IPPROTO_ICMPV6 (58), icmpv6_rcv() will be invoked.

When the INET6_PROTO_NOPOLICY flag is set, this implies that IPsec policy checks should not be performed;
for example, the xfrm6_policy_check() method is not called in ip6_input_finish() because the
INET6_PROTO_NOPOLICY flag is set:

int __init icmpv6_init(void)
 {
 int err;
 ...
 if (inet6_add_protocol(&icmpv6_protocol, IPPROTO_ICMPV6) < 0)
 goto fail;
 return 0;
 }

Figure 3-2. ICMP in IPv4 and IPv6. The counterpart of the IGMP protocol in IPv6 is the MLD protocol, and the
counterpart of the ARP protocol in IPv6 is the ND protocol

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

49

static int __net_init icmpv6_sk_init(struct net *net)
{
 struct sock *sk;
 ...
 for_each_possible_cpu(i) {
 err = inet_ctl_sock_create(&sk, PF_INET6,
 SOCK_RAW, IPPROTO_ICMPV6, net);
 ...
 net->ipv6.icmp_sk[i] = sk;
 ...

}

As in ICMPv4, a raw ICMPv6 socket is created for each CPU and is kept in an array. The current sk can be
accessed by the icmpv6_sk() method.

ICMPv6 Header
The ICMPv6 header consists of type (8 bits), code (8 bits), and checksum (16 bits), as you can see in Figure 3-3.

Figure 3-3. ICMPv6 header

The ICMPv6 header is represented by struct icmp6hdr:

struct icmp6hdr {
 __u8 icmp6_type;
 __u8 icmp6_code;
 __sum16 icmp6_cksum;
 ...
}

There is not enough room to show all the fields of struct icmp6hdr because it is too large (it is defined in
include/uapi/linux/icmpv6.h). When the high-order bit of the type field is 0 (values in the range from 0 to 127),
it indicates an error message; when the high-order bit is 1 (values in the range from 128 to 255), it indicates an
information message. Table 3-1 shows the ICMPv6 message types by their number and kernel symbol.

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

50

The current complete list of assigned ICMPv6 types and codes can be found at
www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xml.

ICMPv6 performs some tasks that are not performed by ICMPv4. For example, Neighbour Discovery is done
by ICMPv6, whereas in IPv4 it is done by the ARP/RARP protocols. Multicast group memberships are handled by
ICMPv6 in conjunction with the MLD (Multicast Listener Discovery) protocol, whereas in IPv4 this is performed
by IGMP (Internet Group Management Protocol). Some ICMPv6 messages are similar in meaning to ICMPv4
messages; for example, ICMPv6 has these messages: “Destination Unreachable,” (ICMPV6_DEST_UNREACH),
“Time Exceeded” (ICMPV6_TIME_EXCEED), “Parameter Problem” (ICMPV6_PARAMPROB), “Echo Request”
(ICMPV6_ECHO_REQUEST), and more. On the other hand, some ICMPv6 messages are unique to IPv6, such as
the NDISC_NEIGHBOUR_SOLICITATION message.

Receiving ICMPv6 Messages
When getting an ICMPv6 packet, it is delivered to the icmpv6_rcv() method, which gets only an SKB as a parameter.
Figure 3-4 shows the Rx path of a received ICMPv6 message.

Table 3-1. ICMPv6 Messages

Type Kernel symbol Error/Info Description

1 ICMPV6_DEST_UNREACH Error Destination Unreachable

2 ICMPV6_PKT_TOOBIG Error Packet too big

3 ICMPV6_TIME_EXCEED Error Time Exceeded

4 ICMPV6_PARAMPROB Error Parameter problem

128 ICMPV6_ECHO_REQUEST Info Echo Request

129 ICMPV6_ECHO_REPLY Info Echo Reply

130 ICMPV6_MGM_QUERY Info Multicast group membership management
query

131 ICMPV6_MGM_REPORT Info Multicast group membership management
report

132 ICMPV6_MGM_REDUCTION Info Multicast group membership management
reduction

133 NDISC_ROUTER_SOLICITATION Info Router solicitation

134 NDISC_ROUTER_ADVERTISEMENT Info Router advertisement

135 NDISC_NEIGHBOUR_SOLICITATION Info Neighbour solicitation

136 NDISC_NEIGHBOUR_ADVERTISEMENT Info Neighbour advertisement

137 NDISC_REDIRECT Info Neighbour redirect

http://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xml
http://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xml

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

51

In the icmpv6_rcv() method, after some sanity checks, the InMsgs SNMP counter (ICMP6_MIB_INMSGS) is
incremented. Subsequently, the checksum correctness is verified. If the checksum is not correct, the InErrors SNMP
counter (ICMP6_MIB_INERRORS) is incremented, and the SKB is freed. The icmpv6_rcv() method does not return
an error in this case (in fact it always returns 0, much like its IPv4 counterpart, icmp_rcv()).Then the ICMPv6 header
is read in order to find its type; the corresponding procfs message type counter is incremented by the ICMP6MSGIN_
INC_STATS_BH macro (each ICMPv6 message type has a procfs counter). For example, when receiving ICMPv6
ECHO requests (“pings”), the /proc/net/snmp6/Icmp6InEchos counter is incremented, and when receiving ICMPv6
Neighbour Solicitation requests, the /proc/net/snmp6/Icmp6InNeighborSolicits counter is incremented.

In ICMPv6, there is no dispatch table like the icmp_pointers table in ICMPv4. The handlers are invoked
according to the ICMPv6 message type, in a long switch(type) command:

“Echo Request” (ICMPV6_ECHO_REQUEST) is handled by the • icmpv6_echo_reply()
method.

“Echo Reply” (ICMPV6_ECHO_REPLY) is handled by the • ping_rcv() method. The
ping_rcv() method is in the IPv4 ping module (net/ipv4/ping.c); this method is a dual-
stack method (it handles both IPv4 and IPv6—discussed in the beginning of this chapter).

Packet too big (ICMPV6_PKT_TOOBIG).•

First a check is done to verify that the data block area (pointed to by • skb->data) contains
a block of data whose size is at least as big as an ICMP header. This is done by the
pskb_may_pull() method. If this condition is not met, the packet is dropped.

Then the • icmpv6_notify() method is invoked. This method eventually calls the
raw6_icmp_error() method so that the registered raw sockets will handle the
ICMP messages.

Figure 3-4. Receive path of ICMPv6 message

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

52

“Destination Unreachable,” “Time Exceeded,” and “Parameter Problem” •
(ICMPV6_DEST_UNREACH, ICMPV6_TIME_EXCEED, and ICMPV6_PARAMPROB
respectively) are also handled by icmpv6_notify().

Neighbour Discovery (ND) messages:•

NDISC_ROUTER_SOLICITATION: Messages which are sent usually to the • all-routers
multicast address of FF02::2, and which are answered by router advertisements. (Special
IPv6 multicast addresses are discussed in Chapter 8).

NDISC_ROUTER_ADVERTISEMENT: Messages which are sent periodically by routers •
or as an immediate response to router solicitation requests. Router advertisements
contain prefixes that are used for on-link determination and/or address configuration, a
suggested hop limit value, and so on.

NDISC_NEIGHBOUR_SOLICITATION: The counterpart of ARP request in IPv4.•

NDISC_NEIGHBOUR_ADVERTISEMENT: The counterpart of ARP reply in IPv4.•

NDISC_REDIRECT: Used by routers to inform hosts of a better first hop for a destination.•

All the Neighbour Discovery (ND) messages are handled by the neighbour discovery •
method, ndisc_rcv() (net/ipv6/ndisc.c). The ndisc_rcv() method is discussed in
Chapter 7.

ICMPV6_MGM_QUERY (Multicast Listener Report) is handled by • igmp6_event_query().

ICMPV6_MGM_REPORT (Multicast Listener Report) is handled by • igmp6_event_report().
Note: Both ICMPV6_MGM_QUERY and ICMPV6_MGM_REPORT are discussed in more detail
in Chapter 8.

Messages of unknown type, and the following messages, are all handled by the •
icmpv6_notify() method:

ICMPV6_MGM_REDUCTION: When a host leaves a multicast group, it sends an MLDv2 •
ICMPV6_MGM_REDUCTION message; see the igmp6_leave_group() method in net/
ipv6/mcast.c.

ICMPV6_MLD2_REPORT: MLDv2 Multicast Listener Report packet; usually sent •
with destination address of the all MLDv2-capable routers Multicast Group Address
(FF02::16).

ICMPV6_NI_QUERY- ICMP: Node Information Query.•

ICMPV6_NI_REPLY: ICMP Node Information Response.•

ICMPV6_DHAAD_REQUEST: ICMP Home Agent Address Discovery Request Message; •
see section 6.5, RFC 6275, “Mobility Support in IPv6.”

ICMPV6_DHAAD_REPLY: ICMP Home Agent Address Discovery Reply Message; See •
section 6.6, RFC 6275.

ICMPV6_MOBILE_PREFIX_SOL: ICMP Mobile Prefix Solicitation Message Format; see •
section 6.7, RFC 6275.

ICMPV6_MOBILE_PREFIX_ADV: ICMP Mobile Prefix Advertisement Message Format; •
see section 6.8, RFC 6275.

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

53

Notice that the switch(type) command ends like this:

 default:
 LIMIT_NETDEBUG(KERN_DEBUG "icmpv6: msg of unknown type\n");

 /* informational */
 if (type & ICMPV6_INFOMSG_MASK)
 break;

 /*
 * error of unknown type.
 * must pass to upper level
 */

 icmpv6_notify(skb, type, hdr->icmp6_code, hdr->icmp6_mtu);
 }

Informational messages fulfill the condition (type & ICMPV6_INFOMSG_MASK), so they are discarded, whereas the
other messages which do not fulfill this condition (and therefore should be error messages) are passed to the upper
layer. This is done in accordance with section 2.4 (“Message Processing Rules”) of RFC 4443.

Sending ICMPv6 Messages
The main method for sending ICMPv6 messages is the icmpv6_send() method. The method is called when the
local machine initiates sending an ICMPv6 message under conditions described in this section. There is also the
icmpv6_echo_reply() method, which is called only as a response to an ICMPV6_ECHO_REQUEST (“ping”) message.
The icmp6_send() method is invoked from many places in the IPv6 network stack. This section looks at several examples.

Example: Sending “Hop Limit Time Exceeded” ICMPv6 Messages

When forwarding a packet, every machine decrements the Hop Limit Counter by 1. The Hop Limit Counter is a
member of the IPv6 header—it is the IPv6 counterpart to Time To Live in IPv4. When the value of the Hop Limit
Counter header reaches 0, an ICMPV6_TIME_EXCEED message is sent with ICMPV6_EXC_HOPLIMIT code by
calling the icmpv6_send() method, then the statistics are updated and the packet is dropped:

int ip6_forward(struct sk_buff *skb)
{
 ...
 if (hdr->hop_limit <= 1) {
 /* Force OUTPUT device used as source address */
 skb->dev = dst->dev;
 icmpv6_send(skb, ICMPV6_TIME_EXCEED, ICMPV6_EXC_HOPLIMIT, 0);
 IP6_INC_STATS_BH(net,
 ip6_dst_idev(dst), IPSTATS_MIB_INHDRERRORS);

 kfree_skb(skb);
 return -ETIMEDOUT;
 }
 ...
}

(net/ipv6/ip6_output.c)

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

54

Example: Sending “Fragment Reassembly Time Exceeded” ICMPv6 Messages

When a timeout of a fragment occurs, an ICMPV6_TIME_EXCEED message with ICMPV6_EXC_FRAGTIME code is
sent back, by calling the icmpv6_send() method:

void ip6_expire_frag_queue(struct net *net, struct frag_queue *fq,
 struct inet_frags *frags)
 {
 . . .
 icmpv6_send(fq->q.fragments, ICMPV6_TIME_EXCEED, ICMPV6_EXC_FRAGTIME, 0);
 . . .
 }

(net/ipv6/reassembly.c)

Example: Sending “Destination Unreachable”/“Port Unreachable” ICMPv6 Messages

When receiving UDPv6 packets, a matching UDPv6 socket is searched for. If no matching socket is found,
the checksum correctness is verified. If it is wrong, the packet is dropped silently. If it is correct, the statistics
(UDP_MIB_NOPORTS MIB counter, which is exported to procfs by /proc/net/snmp6/Udp6NoPorts) is updated
and a “Destination Unreachable”/“Port Unreachable” ICMPv6 message is sent back with icmpv6_send():

int __udp6_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, int proto)
{
 ...
 sk = __udp6_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
 if (sk != NULL) {
 ...
 }
 ...
 if (udp_lib_checksum_complete(skb))
 goto discard;

 UDP6_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0);
 ...

}

This case is very similar to the UDPv4 example given earlier in this chapter.

Example: Sending “Fragmentation Needed” ICMPv6 Messages

When forwarding a packet, if its size is larger than the MTU of the outgoing link, and the local_df bit in the SKB is not
set, the packet is discarded and an ICMPV6_PKT_TOOBIG message is sent back to the sender. The information in
this message is used as part of the Path MTU (PMTU) discovery process.

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

55

Note that as opposed to the parallel case in IPv4, where an ICMP_DEST_UNREACH message with ICMP_
FRAG_NEEDED code is sent, in this case an ICMPV6_PKT_TOOBIG message is sent back, and not a “Destination
Unreachable” (ICMPV6_DEST_UNREACH) message. The ICMPV6_PKT_TOOBIG message has a message type
number of its own in ICMPv6:

int ip6_forward(struct sk_buff *skb)
{
...
 if ((!skb->local_df && skb->len > mtu && !skb_is_gso(skb)) ||
 (IP6CB(skb)->frag_max_size && IP6CB(skb)->frag_max_size > mtu)) {
 /* Again, force OUTPUT device used as source address */
 skb->dev = dst->dev;
 icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu);
 IP6_INC_STATS_BH(net,
 ip6_dst_idev(dst), IPSTATS_MIB_INTOOBIGERRORS);
 IP6_INC_STATS_BH(net,
 ip6_dst_idev(dst), IPSTATS_MIB_FRAGFAILS);
 kfree_skb(skb);
 return -EMSGSIZE;
 }
...
}

(net/ipv6/ip6_output.c)

Example: Sending “Parameter Problem” ICMPv6 Messages

When encountering a problem in parsing extension headers, an ICMPV6_PARAMPROB message with
ICMPV6_UNK_OPTION code is sent back:

static bool ip6_tlvopt_unknown(struct sk_buff *skb, int optoff) {
 switch ((skb_network_header(skb)[optoff] & 0xC0) >> 6) {
 ...
 case 2: /* send ICMP PARM PROB regardless and drop packet */
 icmpv6_param_prob(skb, ICMPV6_UNK_OPTION, optoff);
 return false;
 }

(net/ipv6/exthdrs.c)

The icmpv6_send() method supports rate limiting by calling icmpv6_xrlim_allow(). I should mention here that,
as in ICMPv4, rate limiting is not performed automatically in ICMPv6 on all types of traffic. Here are the conditions
under which rate limiting check will not be performed:

Informational messages•

PMTU discovery•

Loopback device•

If all these conditions are not matched, rate limiting is performed by calling the inet_peer_xrlim_allow()
method, which is shared between ICMPv4 and ICMPv6. Note that unlike IPv4, you can’t set a rate mask in IPv6. It is
not forbidden by the ICMPv6 spec, RFC 4443, but it was never implemented.

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

56

Let’s look inside the icmp6_send() method. First, this is its prototype:

static void icmp6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info)

The parameters are similar to those of the icmp_send() method of IPv4, so I won’t repeat the explanation here.
When further looking into the icmp6_send() code, you find some sanity checks. Checking whether the provoking
message is an ICMPv6 error message is done by calling the is_ineligible() method; if it is, the icmp6_send() method
terminates. The length of the message should not exceed 1280, which is IPv6 minimum MTU (IPV6_MIN_MTU,
defined in include/linux/ipv6.h). This is done in accordance with RFC 4443, section 2.4 (c), which says that every
ICMPv6 error message must include as much of the IPv6 offending (invoking) packet (the packet that caused the
error) as possible without making the error message packet exceed the minimum IPv6 MTU. Then the message is
passed to the IPv6 layer, by the ip6_append_data() method and by the icmpv6_push_pending_frame() method, to
free the SKB.

Now I’ll turn to the icmpv6_echo_reply() method; as a reminder, this method is called as a response to
an ICMPV6_ECHO message. The icmpv6_echo_reply() method gets only one parameter, the SKB. It builds an
icmpv6_msg object and sets its type to ICMPV6_ECHO_REPLY. Then it passes the message to the IPv6 layer, by the
ip6_append_data() method and by the icmpv6_push_pending_frame() method. If the ip6_append_data() method
fails, an SNMP counter (ICMP6_MIB_OUTERRORS) is incremented, and ip6_flush_pending_frames() is invoked to
free the SKB.

Chapters 7 and 8 also discuss ICMPv6. The next section introduces ICMP sockets and the purpose they serve.

ICMP Sockets (“Ping sockets”)
A new type of sockets (IPPROTO_ICMP) was added by a patch from the Openwall GNU/*/Linux distribution (Owl),
which provides security enhancements over other distributions. The ICMP sockets enable a setuid-less “ping.” For
Openwall GNU/*/Linux, it was the last step on the road to a setuid-less distribution. With this patch, a new ICMPv4
ping socket (which is not a raw socket) is created with:

socket(PF_INET, SOCK_DGRAM, IPPROTO_ICMP);

instead of with:

socket(PF_INET, SOCK_RAW, IPPROTO_ICMP);

There is also support for IPPROTO_ICMPV6 sockets, which was added later, in net/ipv6/icmp.c. A new ICMPv6
ping socket is created with:

socket(PF_INET6, SOCK_DGRAM, IPPROTO_ICMPV6);

instead of with:

socket(PF_INET6, SOCK_RAW, IPPROTO_ICMP6);

Similar functionality (non-privileged ICMP) is implemented in Mac OS X; see: www.manpagez.com/man/4/icmp/.
Most of the code for ICMP sockets is in net/ipv4/ping.c; in fact, large parts of the code in net/ipv4/ping.c

are dual-stack (IPv4 and IPv6). In net/ipv6/ping.c there are only few IPv6-specific bits. Using ICMP sockets is
disabled by default. You can enable ICMP sockets by setting the following procfs entry: /proc/sys/net/ipv4/
ping_group_range. It is “1 0” by default, meaning that nobody (not even root) may create ping sockets. So, if you want
to allow a user with uid and gid of 1000 to use the ICMP socket, you should run this from the command line (with
root privileges): echo 1000 1000 > /proc/sys/net/ipv4/ping_group_range, and then you can ping from this user

http://www.manpagez.com/man/4/icmp/

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

57

account using ICMP sockets. If you want to set privileges for a user in the system, you should run from the command
line echo 0 2147483647 > /proc/sys/net/ipv4/ping_group_range. (2147483647 is the value of GID_T_MAX;
see include/net/ping.h.) There are no separate security settings for IPv4 and IPv6; everything is controlled by /
proc/sys/net/ipv4/ping_group_range. The ICMP sockets support only ICMP_ECHO for IPv4 or ICMPV6_ECHO_
REQUEST for IPv6, and the code of the ICMP message must be 0 in both cases.

The ping_supported() helper method checks whether the parameters for building the ICMP message (both for
IPv4 and IPv6) are valid. It is invoked from ping_sendmsg():

static inline int ping_supported(int family, int type, int code)
{
 return (family == AF_INET && type == ICMP_ECHO && code == 0) ||
 (family == AF_INET6 && type == ICMPV6_ECHO_REQUEST && code == 0);
}

(net/ipv4/ping.c)

ICMP sockets export the following entries to procfs: /proc/net/icmp for IPv4 and /proc/net/icmp6 for IPv6.
For more info about ICMP sockets see http://openwall.info/wiki/people/segoon/ping and

http://lwn.net/Articles/420799/.

Summary
This chapter covered the implementation of ICMPv4 and ICMPv6. You learned about the ICMP header format of both
protocols and about receiving and sending messages with both protocols. The new features of ICMPv6, which you
will encounter in upcoming chapters, were also discussed. The Neighbouring Discovery protocol, which uses ICMPv6
messages, is discussed in Chapter 7, and the MLD protocol, which also uses ICMPv6 messages, is covered in
Chapter 8. The next chapter, Chapter 4, talks about the implementation of the IPv4 network layer.

In the “Quick Reference” section that follows, I cover the top methods related to the topics discussed in this
chapter, ordered by their context. Then two tables mentioned in the chapter, some important relevant procfs entries
and a short section about ICMP messages usage in iptables reject rules are all covered.

Quick Reference
I conclude this chapter with a short list of important methods of ICMPv4 and ICMPv6, 6 tables, a section about
procfs entries, and a short section about using a reject target in iptables and ip6tables to create ICMP “Destination
Unreachable” messages.

Methods
The following methods were covered in this chapter.

int icmp_rcv(struct sk_buff *skb);

This method is the main handler for processing incoming ICMPv4 packets.

extern void icmp_send(struct sk_buff *skb_in, int type, int code, __be32 info);

This method sends an ICMPv4 message. The parameters are the provoking SKB, ICMPv4 message type, ICMPv4
message code, and info (which is dependent on type).

http://openwall.info/wiki/people/segoon/ping
http://lwn.net/Articles/420799/

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

58

struct icmp6hdr *icmp6_hdr(const struct sk_buff *skb);

This method returns the ICMPv6 header, which the specified skb contains.

void icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info);

This method sends an ICMPv6 message. The parameters are the provoking SKB, ICMPv6 message type, ICMPv6
message code, and info (which is dependent on type).

void icmpv6_param_prob(struct sk_buff *skb, u8 code, int pos);

This method is a convenient version of the icmp6_send() method, which all it does is call icmp6_send() with
ICMPV6_PARAMPROB as a type, and with the other specified parameters, skb, code and pos, and frees the SKB
afterwards.

Tables
The following tables were covered in this chapter.

Table 3-2. ICMPv4 “Destination Unreachable” (ICMP_DEST_UNREACH) Codes

Code Kernel Symbol Description

0 ICMP_NET_UNREACH Network Unreachable

1 ICMP_HOST_UNREACH Host Unreachable

2 ICMP_PROT_UNREACH Protocol Unreachable

3 ICMP_PORT_UNREACH Port Unreachable

4 ICMP_FRAG_NEEDED Fragmentation Needed, but the DF flag is set.

5 ICMP_SR_FAILED Source route failed

6 ICMP_NET_UNKNOWN Destination network unknown

7 ICMP_HOST_UNKNOWN Destination host unknown

8 ICMP_HOST_ISOLATED Source host isolated

9 ICMP_NET_ANO The destination network is administratively prohibited.

10 ICMP_HOST_ANO The destination host is administratively prohibited.

11 ICMP_NET_UNR_TOS The network is unreachable for Type Of Service.

12 ICMP_HOST_UNR_TOS The host is unreachable for Type Of Service.

13 ICMP_PKT_FILTERED Packet filtered

14 ICMP_PREC_VIOLATION Precedence violation

15 ICMP_PREC_CUTOFF Precedence cut off

16 NR_ICMP_UNREACH Number of unreachable codes

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

59

Table 3-3. ICMPv4 Redirect (ICMP_REDIRECT) Codes

Code Kernel Symbol Description

0 ICMP_REDIR_NET Redirect Net

1 ICMP_REDIR_HOST Redirect Host

2 ICMP_REDIR_NETTOS Redirect Net for TOS

3 ICMP_REDIR_HOSTTOS Redirect Host for TOS

Table 3-4. ICMPv4 Time Exceeded (ICMP_TIME_EXCEEDED) Codes

Code Kernel Symbol Description

0 ICMP_EXC_TTL TTL count exceeded

1 ICMP_EXC_FRAGTIME Fragment Reassembly time exceeded

Table 3-5. ICMPv6 “Destination Unreachable” (ICMPV6_DEST_UNREACH) Codes

Code Kernel Symbol Description

0 ICMPV6_NOROUTE No route to destination

1 ICMPV6_ADM_PROHIBITED Communication with destination
administratively prohibited

2 ICMPV6_NOT_NEIGHBOUR Beyond scope of source address

3 ICMPV6_ADDR_UNREACH Address Unreachable

4 ICMPV6_PORT_UNREACH Port Unreachable

Table 3-6. ICMPv6 Time Exceeded (ICMPV6_TIME_EXCEED) Codes

Code Kernel Symbol Description

0 ICMPV6_EXC_HOPLIMIT Hop limit exceeded in transit

1 ICMPV6_EXC_FRAGTIME Fragment reassembly time exceeded

Note that ICMPV6_PKT_TOOBIG, which is the counterpart of IPv4 ICMP_DEST_UNREACH /ICMP_FRAG_
NEEDED, is not a code of ICMPV6_DEST_UNREACH, but an ICMPv6 type in itself.

Table 3-7. ICMPv6 Parameter Problem (ICMPV6_PARAMPROB) Codes

Code Kernel Symbol Description

0 ICMPV6_HDR_FIELD Erroneous header field encountered

1 ICMPV6_UNK_NEXTHDR Unknown Next Header type encountered

2 ICMPV6_UNK_OPTION Unknown IPv6 option encountered

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

60

procfs entries
The kernel provides a way of configuring various settings for various subsystems from the userspace by way of writing
values to entries under /proc. These entries are referred to as procfs entries. All of the ICMPv4 procfs entries are
represented by variables in the netns_ipv4 structure (include/net/netns/ipv4.h), which is an object in the network
namespace (struct net). Network namespaces and their implementation are discussed in Chapter 14. The following
are the names of the sysctl variables that correspond to the ICMPv4 netns_ipv4 elements, explanations about their
usage, and the default values to which they are initialized, specifying also in which method the initialization takes place.

sysctl_icmp_echo_ignore_all

When icmp_echo_ignore_all is set, echo requests (ICMP_ECHO) will not be replied.
procfs entry: /proc/sys/net/ipv4/icmp_echo_ignore_all
Initialized to 0 in icmp_sk_init()

sysctl_icmp_echo_ignore_broadcasts

When receiving a broadcast or a multicast echo (ICMP_ECHO) message or a timestamp (ICMP_TIMESTAMP)
message, you check whether broadcast/multicast requests are permitted by reading sysctl_icmp_echo_ignore_
broadcasts. If this variable is set, you drop the packet and return 0.

procfs entry: /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts
Initialized to 1 in icmp_sk_init()

sysctl_icmp_ignore_bogus_error_responses

Some routers violate RFC1122 by sending bogus responses to broadcast frames. In the icmp_unreach() method, you
check this flag. If this flag is set to TRUE, the kernel will not log these warnings (“<IPv4Addr>sent an invalid ICMP type. . .”).

procfs entry: /proc/sys/net/ipv4/icmp_ignore_bogus_error_responses
Initialized to 1 in icmp_sk_init()

sysctl_icmp_ratelimit

Limit the maximal rates for sending ICMP packets whose type matches the icmp ratemask (icmp_ratemask, see later
in this section) to specific targets.

A value of 0 means disable any limiting; otherwise it is the minimal space between responses in milliseconds.
procfs entry: /proc/sys/net/ipv4/icmp_ratelimit
Initialized to 1 * HZ in icmp_sk_init()

sysctl_icmp_ratemask

Mask made of ICMP types for which rates are being limited. Each bit is an ICMPv4 type.
procfs entry: /proc/sys/net/ipv4/icmp_ratemask
Initialized to 0x1818 in icmp_sk_init()

sysctl_icmp_errors_use_inbound_ifaddr

The value of this variable is checked in icmp_send(). When it’s not set, the ICMP error messages are sent with the
primary address of the interface on which the packet will be sent. When it is set, the ICMP message will be sent with
the primary address of the interface that received the packet that caused the icmp error.

procfs entry: /proc/sys/net/ipv4/icmp_errors_use_inbound_ifaddr
Initialized to 0 in icmp_sk_init()

CHAPTER 3 ■ INTERNET CONTROL MESSAGE PROTOCOL (ICMP)

61

Note ■ See also more about the ICMP sysctl variables, their types and their default values in

Documentation/networking/ip-sysctl.txt.

Creating “Destination Unreachable” Messages with iptables
The iptables userspace tool enables us to set rules which dictate what the kernel should do with traffic according
to filters set by these rules. Handling iptables rules is done in the netfilter subsystem, and is discussed in Chapter
9. One of the iptables rules is the reject rule, which discards packets without further processing them. When
setting an iptables reject target, the user can set a rule to send a “Destination Unreachable” ICMPv4 messages
with various codes using the -j REJECT and --reject-with qualifiers. For example, the following iptables rule will
discard any packet from any source with sending back an ICMP message of “ICMP Host Prohibited”:

iptables -A INPUT -j REJECT --reject-with icmp-host-prohibited

These are the possible values to the --reject-with qualifier for setting an ICMPV4 message which will be sent in
reply to the sending host:

icmp-net-unreachable - ICMP_NET_UNREACH
icmp-host-unreachable - ICMP_HOST_UNREACH
icmp-port-unreachable - ICMP_PORT_UNREACH
icmp-proto-unreachable - ICMP_PROT_UNREACH
icmp-net-prohibited - ICMP_NET_ANO
icmp-host-prohibited - ICMP_HOST_ANO
icmp-admin-prohibited - ICMP_PKT_FILTERED

You can also use --reject-with tcp-reset which will send a TCP RST packet in reply to the sending host.

(net/ipv4/netfilter/ipt_REJECT.c)

With ip6tables in IPv6, there is also a REJECT target. For example:

ip6tables -A INPUT -s 2001::/64 -p ICMPv6 -j REJECT --reject-with icmp6-adm-prohibited

These are the possible values to the --reject-with qualifier for setting an ICMPv6 message which will be sent in
reply to the sending host:

no-route, icmp6-no-route - ICMPV6_NOROUTE.
adm-prohibited, icmp6-adm-prohibited - ICMPV6_ADM_PROHIBITED.
port-unreach, icmp6-port-unreachable - ICMPV6_NOT_NEIGHBOUR.
addr-unreach, icmp6-addr-unreachable - ICMPV6_ADDR_UNREACH.

(net/ipv6/netfilter/ip6t_REJECT.c)

